def adaBoost(self, settings, data=None, dropna=True):
df = self.__loadData(data, dropna)
features = df.columns[:-1]
X = df[features]
y = df.iloc[:, -1].values
seed = 7
num_trees = 500
kfold = model_selection.KFold(n_splits=10, random_state=seed)
print kfold
model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
results = model_selection.cross_val_score(model, X, y, cv=kfold)
model.fit(X, y)
print results.mean()
print model.score(X, y)
return True
评论列表
文章目录