def classify_user_item(train_data_new, test_data_new, result9):
data = np.loadtxt(train_data_new)
X = data[:, :-1] # select columns 0 through end-1
y = data[:, -1] # select column end
print X
print y
print 'start train'
clf2 = RandomForestClassifier(n_estimators=100)
# clf2=GradientBoostingClassifier()
clf2.fit(X, y)
# clf2 = LogisticRegression().fit(X, y)
print clf2.classes_
data1 = np.loadtxt(test_data_new)
X_test = data1[:, :]
print 'testing data is ok'
result = clf2.predict_proba(X_test)
print 'output result'
print result
f_result = open(result9, 'w')
for i in range(0, len(result)):
f_result.write(str(result[i]) + '\n')
classify_user_item.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录