10.4 RF_regression.py 文件源码

python
阅读 32 收藏 0 点赞 0 评论 0

项目:ML-note 作者: JasonK93 项目源码 文件源码
def test_RandomForestRegressor_max_features(*data):
    '''
    test the performance with different max_features
    :param data:  train_data, test_data, train_value, test_value
    :return: None
    '''
    X_train,X_test,y_train,y_test=data
    max_features=np.linspace(0.01,1.0)
    fig=plt.figure()
    ax=fig.add_subplot(1,1,1)
    testing_scores=[]
    training_scores=[]
    for max_feature in max_features:
        regr=ensemble.RandomForestRegressor(max_features=max_feature)
        regr.fit(X_train,y_train)
        training_scores.append(regr.score(X_train,y_train))
        testing_scores.append(regr.score(X_test,y_test))
    ax.plot(max_features,training_scores,label="Training Score")
    ax.plot(max_features,testing_scores,label="Testing Score")
    ax.set_xlabel("max_feature")
    ax.set_ylabel("score")
    ax.legend(loc="lower right")
    ax.set_ylim(0,1.05)
    plt.suptitle("RandomForestRegressor")
    plt.show()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号