def trainModel(featureCount, imageCount, save):
clf = RandomForestRegressor(n_estimators=1, n_jobs=-1)
features = generateFeatures(featureCount)
for image in range(0, imageCount):
print "Image " + str(image)
train(clf, features, image)
clf = clf.fit(X, Y)
model = (clf, features)
if save:
joblib.dump(model, "model.pkl")
return model
评论列表
文章目录