def _train_convert_evaluate(self, **scikit_params):
"""
Train a scikit-learn model, convert it and then evaluate it with CoreML
"""
scikit_model = RandomForestRegressor(random_state = 1, **scikit_params)
scikit_model.fit(self.X, self.target)
# Convert the model
spec = skl_converter.convert(scikit_model, self.feature_names, self.output_name)
# Get predictions
df = pd.DataFrame(self.X, columns=self.feature_names)
df['prediction'] = scikit_model.predict(self.X)
# Evaluate it
metrics = evaluate_regressor(spec, df, verbose = False)
return metrics
test_random_forest_regression_numeric.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录