def train_xgboost():
df = pd.read_csv('survival_data.csv', index_col=0, encoding = 'UTF-7')
p = np.array([np.mean(np.load('training/%s_flair.nii.gz.npy' % str(id)), axis=0) for id in folder_names_train])
q = np.array([np.mean(np.load('training/%s_t1.nii.gz.npy' % str(id)), axis=0) for id in folder_names_train])
r = np.array([np.mean(np.load('training/%s_t1ce.nii.gz.npy' % str(id)), axis=0) for id in folder_names_train])
s = np.array([np.mean(np.load('training/%s_t2.nii.gz.npy' % str(id)), axis=0) for id in folder_names_train])
y=np.array([])
t=0
z=np.array([])
for ind in range(len(folder_names_train)):
try:
temp = df.get_value(str(folder_names_train[ind]),'Survival')
y=np.append(y,temp)
temp = df.get_value(str(folder_names_train[ind]),'Age')
z=np.append(z,np.array([temp]))
except Exception as e:
t+=1
print (t,str(e),"Label Not found, deleting entry")
y=np.append(y,0)
z=np.array([[v] for v in z])
t=np.concatenate((p,q),axis=1)
u=np.concatenate((r,s),axis=1)
x=np.concatenate((t,u),axis=1)
#print(x.shape)
#print (x)
#print (x.shape,z.shape)
x=np.concatenate((x,z),axis=1)
#print (x)
#clf=linear_model.LogisticRegression(C=1e5)
#clf = RandomForestRegressor()
clf = xgb.XGBRegressor()
clf.fit(x,y)
return clf
resnet_regressor.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录