def unscaled_pipelines():
# Random forest parameters
random_forest_kwargs = {
'n_estimators': 10,
'criterion': 'mse',
'random_state': _RANDOM_STATE,
'n_jobs': cpu_count(),
'verbose': True,
}
# Gradient boosting parameters
gradient_boost_kwargs = {
'random_state': _RANDOM_STATE,
'verbose': 1,
}
models = [
DecisionTreeRegressor(max_depth=3, random_state=_RANDOM_STATE),
# RandomForestRegressor(**random_forest_kwargs),
# GradientBoostingRegressor(**gradient_boost_kwargs),
]
pipelines = []
for m in models:
# Steps
pipelines.append(make_pipeline(m))
return pipelines
评论列表
文章目录