def run_predict_random_forest(X_train,Y_train,X_test,Y_test, n_estimators=30, max_features=500, show_mistakes=False):
forest = RandomForestClassifier(n_estimators=10, max_features=20, max_depth=10)
clf = SKClassifier(forest)
forest_fit = clf.fit(X_train, Y_train)
pred = forest_fit.predict(X_test)
print('\n Random forest 0-1 error. \n Train: ',zero_one_score(Y_train, forest_fit.predict(X_train)), '\n Test: ',
zero_one_score(Y_test, pred))
met = clf.metrics(X_test,Y_test)
if show_mistakes:
mis = clf.show_mistakes(X_test,Y_test,10)
print('Metrics:', met)
return clf
评论列表
文章目录