def test_random_forest_classifier(self):
for dtype in self.number_data_type.keys():
scikit_model = RandomForestClassifier(random_state=1)
data = self.scikit_data['data'].astype(dtype)
target = self.scikit_data['target'].astype(dtype) > self.scikit_data['target'].astype(dtype).mean()
scikit_model, spec = self._sklearn_setup(scikit_model, dtype, data, target)
test_data = data[0].reshape(1, -1)
self._check_tree_model(spec, 'multiArrayType', 'int64Type', 2)
coreml_model = create_model(spec)
try:
self.assertEqual(scikit_model.predict(test_data)[0],
bool(int(coreml_model.predict({'data': test_data})['target'])),
msg="{} != {} for Dtype: {}".format(
scikit_model.predict(test_data)[0],
bool(int(coreml_model.predict({'data': test_data})['target'])),
dtype
)
)
except RuntimeError:
print("{} not supported. ".format(dtype))
评论列表
文章目录