def learns(tests,trains,indep=lambda x: x[:-1],
dep = lambda x: x[-1],
rf = Abcd(),
lg = Abcd(),
dt = Abcd(),
nb = Abcd()):
x1,y1,x2,y2= trainTest(tests,trains,indep,dep)
forest = RandomForestClassifier(n_estimators = 50)
forest = forest.fit(x1,y1)
for n,got in enumerate(forest.predict(x2)):
rf(predicted = got, actual = y2[n])
logreg = linear_model.LogisticRegression(C=1e5)
logreg.fit(x1, y1)
for n,got in enumerate(logreg.predict(x2)):
lg(predicted = got, actual = y2[n])
bayes = GaussianNB()
bayes.fit(x1,y1)
for n,got in enumerate(bayes.predict(x2)):
nb(predicted = got, actual = y2[n])
dectree = DecisionTreeClassifier(criterion="entropy",
random_state=1)
dectree.fit(x1,y1)
for n,got in enumerate(dectree.predict(x2)):
dt(predicted = got, actual = y2[n])
评论列表
文章目录