def test_improvement(self):
np.random.seed(4)
data, target = make_classification(n_samples=100,
n_features=45,
n_informative=15,
n_redundant=5,
class_sep=1,
n_clusters_per_class=4,
flip_y=0.4)
model = RandomForestClassifier(max_depth=5)
model.fit(data, target)
start_score = clf_score(target, model.predict(data))
p1 = Parameter('max_depth', 'integer', lower=1, upper=10)
grid_sizes = {'max_depth': 5}
grid_search = GridSearchOptimizer(model, [p1], clf_score, grid_sizes)
best_params, best_model = grid_search.fit(X_train=data, y_train=target)
best_model.fit(data, target)
final_score = clf_score(target, best_model.predict(data))
self.assertTrue(final_score>start_score)
评论列表
文章目录