test_gridsearch_optimizer.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:OptML 作者: johannespetrat 项目源码 文件源码
def test_improvement(self):
        np.random.seed(4)
        data, target = make_classification(n_samples=100,
                                   n_features=45,
                                   n_informative=15,
                                   n_redundant=5,
                                   class_sep=1,
                                   n_clusters_per_class=4,
                                   flip_y=0.4)
        model = RandomForestClassifier(max_depth=5)
        model.fit(data, target)
        start_score = clf_score(target, model.predict(data))
        p1 = Parameter('max_depth', 'integer', lower=1, upper=10)
        grid_sizes = {'max_depth': 5}
        grid_search = GridSearchOptimizer(model, [p1], clf_score, grid_sizes)
        best_params, best_model = grid_search.fit(X_train=data, y_train=target)
        best_model.fit(data, target)
        final_score = clf_score(target, best_model.predict(data))
        self.assertTrue(final_score>start_score)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号