def masked_invalid(a, copy=True):
"""
Mask an array where invalid values occur (NaNs or infs).
This function is a shortcut to ``masked_where``, with
`condition` = ~(np.isfinite(a)). Any pre-existing mask is conserved.
Only applies to arrays with a dtype where NaNs or infs make sense
(i.e. floating point types), but accepts any array_like object.
See Also
--------
masked_where : Mask where a condition is met.
Examples
--------
>>> import numpy.ma as ma
>>> a = np.arange(5, dtype=np.float)
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array([ 0., 1., NaN, Inf, 4.])
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 -- -- 4.0],
mask = [False False True True False],
fill_value=1e+20)
"""
a = np.array(a, copy=copy, subok=True)
mask = getattr(a, '_mask', None)
if mask is not None:
condition = ~(np.isfinite(getdata(a)))
if mask is not nomask:
condition |= mask
cls = type(a)
else:
condition = ~(np.isfinite(a))
cls = MaskedArray
result = a.view(cls)
result._mask = condition
return result
###############################################################################
# Printing options #
###############################################################################
评论列表
文章目录