core.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:lambda-numba 作者: rlhotovy 项目源码 文件源码
def concatenate(arrays, axis=0):
    """
    Concatenate a sequence of arrays along the given axis.

    Parameters
    ----------
    arrays : sequence of array_like
        The arrays must have the same shape, except in the dimension
        corresponding to `axis` (the first, by default).
    axis : int, optional
        The axis along which the arrays will be joined. Default is 0.

    Returns
    -------
    result : MaskedArray
        The concatenated array with any masked entries preserved.

    See Also
    --------
    numpy.concatenate : Equivalent function in the top-level NumPy module.

    Examples
    --------
    >>> import numpy.ma as ma
    >>> a = ma.arange(3)
    >>> a[1] = ma.masked
    >>> b = ma.arange(2, 5)
    >>> a
    masked_array(data = [0 -- 2],
                 mask = [False  True False],
           fill_value = 999999)
    >>> b
    masked_array(data = [2 3 4],
                 mask = False,
           fill_value = 999999)
    >>> ma.concatenate([a, b])
    masked_array(data = [0 -- 2 2 3 4],
                 mask = [False  True False False False False],
           fill_value = 999999)

    """
    d = np.concatenate([getdata(a) for a in arrays], axis)
    rcls = get_masked_subclass(*arrays)
    data = d.view(rcls)
    # Check whether one of the arrays has a non-empty mask.
    for x in arrays:
        if getmask(x) is not nomask:
            break
    else:
        return data
    # OK, so we have to concatenate the masks
    dm = np.concatenate([getmaskarray(a) for a in arrays], axis)
    # If we decide to keep a '_shrinkmask' option, we want to check that
    # all of them are True, and then check for dm.any()
    if not dm.dtype.fields and not dm.any():
        data._mask = nomask
    else:
        data._mask = dm.reshape(d.shape)
    return data
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号