k_means_kdd.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:dask-ml 作者: dask 项目源码 文件源码
def fit(data, use_scikit_learn=False):
    logger.info("Starting to cluster")
    # Cluster
    n_clusters = 8
    oversampling_factor = 2
    if use_scikit_learn:
        km = sk.KMeans(n_clusters=n_clusters, random_state=0)
    else:
        km = KMeans(n_clusters=n_clusters,
                    oversampling_factor=oversampling_factor,
                    random_state=0)
    t0 = tic()
    logger.info("Starting n_clusters=%2d, oversampling_factor=%2d",
                n_clusters, oversampling_factor)
    km.fit(data)
    t1 = tic()
    logger.info("Finished in %.2f", t1 - t0)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号