def cv_pilot_reg_only(self, alpha = 0):
model = self.model
yT_a = self.rx_p["yT_a"]
x_a = self.rx_p["x_a"]
# kf = KFold()
# loo = cross_validation.LeaveOneOut( x_a.shape[0])
if alpha == 0:
lm = linear_model.LinearRegression()
else:
lm = getattr( linear_model, model)(alpha)
scores = codes.cross_val_score_loo( lm, yT_a, x_a)
# Output is stored with enviromental variables.
pdi = pd.DataFrame()
pdi["model"] = [model]
pdi["alpha"] = [alpha]
pdi["metric"] = ["mean_squared_error"]
pdi["E[scores]"] = [np.mean(np.power(scores,2))] # MSE
pdi["std[scores]"] = ["t.b.d."]
pdi["scores"] = [scores]
return pdi
评论列表
文章目录