def fit(self, X, y, test_size=0.3):
# Grid search cross-val (best C param)
cv = ShuffleSplit(len(X), n_iter=1, test_size=0.3, random_state=self.seed_)
clf_cv = GridSearchCV(self.clf_base_, self.clf_hyparams_, cv=cv, n_jobs=-1, verbose=4)
print('====> Training Classifier (with grid search hyperparam tuning) .. ')
print('====> BATCH Training (in-memory): {:4.3f} MB'.format(X.nbytes / 1024.0 / 1024.0) )
clf_cv.fit(X, y)
print('BEST: {}, {}'.format(clf_cv.best_score_, clf_cv.best_params_))
# Setting clf to best estimator
self.clf_ = clf_cv.best_estimator_
# # Calibrating classifier
# print('Calibrating Classifier ... ')
# self.clf_prob_ = CalibratedClassifierCV(self.clf_, cv=cv, method='sigmoid')
# self.clf_prob_.fit(X, y)
# # Setting clf to best estimator
# self.clf_ = clf_cv.best_estimator_
# pred_targets = self.clf_.predict(X)
if self.epoch_no_ % 10 == 0:
self.save(self.filename_.replace('.h5', '_iter_{}.h5'.format(self.epoch_no_)))
self.save(self.filename_)
self.epoch_no_ += 1
评论列表
文章目录