def svc_classify(my_train_data, my_train_label, my_test_data, svc_c):
# clf = svm.SVC(C=svc_c, kernel='poly')
clf = svm.SVC(C=svc_c)
scores = cross_validation.cross_val_score(clf, my_train_data, my_train_label, cv=5)
print("svc(C=%.1f) accuracy: %0.3f (+/- %0.3f)" % (svc_c, scores.mean(), scores.std() * 2))
clf.fit(my_train_data, my_train_label)
my_test_label = clf.predict(my_test_data)
file_name = "svc_%.1f.csv" % svc_c
save_data(my_test_label, file_name)
评论列表
文章目录