def hackathon_GBC_model(clf, train, features):
clf.fit(train[features], train["Class"])
probab_of_predict = clf.predict_proba(train[features])[:,1]
predict_train = clf.predict(train[features])
cv_score = cross_val_score(clf, train[features], train["Class"], cv=5, scoring="roc_auc")
print("----------------------Model performance-----------------------")
print("Accuracy score: ", accuracy_score(train["Class"].values, predict_train))
print("AUC: ", roc_auc_score(train["Class"],probab_of_predict) )
print("CV score: Mean - {}, Max - {}, Min - {}, Std - {}".format(np.mean(cv_score), np.max(cv_score),
np.min(cv_score), np.std(cv_score)))
Relative_Feature_importance = pd.Series(clf.feature_importances_, features).sort_values(ascending=False)
Relative_Feature_importance.plot(kind='bar', title='Order of Feature Importance')
plt.ylabel('Feature Importance')
plt.show()
评论列表
文章目录