def evaluate(model, name):
"""
Evaluates model by cross validation.
"""
# Get scores through cross validation
score_f1 = cross_val_score(model, X, y, scoring='f1', cv=splitter_)
score_pr = cross_val_score(model, X, y, scoring='precision', cv=splitter_)
score_re = cross_val_score(model, X, y, scoring='recall', cv=splitter_)
# Save image of score distributions
save_dist(name, score_f1, score_pr, score_re)
# Compute mean and std of each score
result = DataFrame(index=['f1', 'precision', 'recall'],
columns=['mean', 'std'])
result.loc['f1', 'mean'] = np.mean(score_f1)
result.loc['precision', 'mean'] = np.mean(score_pr)
result.loc['recall', 'mean'] = np.mean(score_re)
result.loc['f1', 'std'] = np.std(score_f1)
result.loc['precision', 'std'] = np.std(score_pr)
result.loc['recall', 'std'] = np.std(score_re)
print model
print result
04_model_preparation.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录