def cv_Ridge_BIKE( A_list, yV, XX = None, alpha = 0.5, n_folds = 5, n_jobs = -1, grid_std = None):
clf = binary_model.BIKE_Ridge( A_list, XX, alpha = alpha)
ln = A_list[0].shape[0] # ls is the number of molecules.
kf_n = cross_validation.KFold( ln, n_folds=n_folds, shuffle=True)
AX_idx = np.array([list(range( ln))]).T
yV_pred = cross_validation.cross_val_predict( clf, AX_idx, yV, cv = kf_n, n_jobs = n_jobs)
print('The prediction output using cross-validation is given by:')
jutil.cv_show( yV, yV_pred, grid_std = grid_std)
return yV_pred
jgrid (james-90X3A's conflicted copy 2016-04-21).py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录