def _gs_SVC_r0( xM, yVc, params):
"""
Since classification is considered, we use yVc which includes digital values
whereas yV can include float point values.
"""
print(xM.shape, yVc.shape)
clf = svm.SVC()
#parmas = {'alpha': np.logspace(1, -1, 9)}
kf5 = cross_validation.KFold( xM.shape[0], n_folds=5, shuffle=True)
gs = grid_search.GridSearchCV( clf, params, cv = kf5, n_jobs = -1)
gs.fit( xM, yVc)
return gs
jgrid (james-90X3A's conflicted copy 2016-04-21).py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录