utils.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:ilastik-feature-selection 作者: ilastik 项目源码 文件源码
def kfold_train_and_predict(X, Y, classifier, k = 5, indices = None, features = None):
    if indices is None:
        indices = np.array(list(range(X.shape[0])))
    if features is None:
        features = np.array(list(range(X.shape[1])))
    kf = cross_validation.KFold(len(indices), n_folds=k)
    accurs = []
    for train, test in kf:
        train_ind = indices[train].astype("int")
        test_ind = indices[test].astype("int")

        classifier.fit(X[train_ind,:][:,features], Y[train_ind])
        accurs += [classifier.score(X[test_ind,:][:,features], Y[test_ind])]

    accurs = np.array(accurs)
    return np.mean(accurs), np.std(accurs)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号