def eval_cv5(model, x, y):
kf = KFold(len(y), n_folds=5)
acc = np.array([])
pre = np.array([])
rec = np.array([])
f1 = np.array([])
for train_index, test_index in kf:
x_train, x_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]
model.fit(x_train, y_train)
prediction = model.predict(x_test)
evaluation = get_eval(prediction, y_test)
acc = np.append(acc, np.array(evaluation[0]))
pre = np.append(pre, np.array(evaluation[1]))
rec = np.append(rec, np.array(evaluation[2]))
f1 = np.append(f1, np.array(evaluation[3]))
return acc.mean(), pre.mean(), rec.mean(), f1.mean()
评论列表
文章目录