def make_kfold(target, feature):
preds = []
kf = KFold(len(target), n_folds=folds,shuffle=True)
test_numbers = []
for trains, tests in kf:
test_numbers.append(tests)
pred_list = []
feature_list = word_vec.fit_transform([dict(Counter(feature[train])) for train in trains])
target_list = [target[train] for train in trains]
logreg.fit(feature_list, target_list)
for test in tests:
feature_dict = defaultdict(int)
for f in word_vec.get_feature_names():
feature_dict[f] = 0
for key, value in dict(Counter(feature[test])).items():
if key in feature_dict:
feature_dict[key] = value
pred_list.append(feature_dict)
preds.append(logreg.predict(word_vec.fit_transform(pred_list)))
return preds, test_numbers
评论列表
文章目录