def svm_test(X,y):
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=10)
model = svm.LinearSVC(C=1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print 'First round:',metrics.accuracy_score(y_test,y_pred)
#tune parameter C
crange =[0.01,0.1,1,10,100]
for num in crange:
model = svm.LinearSVC(C=num)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print 'C=', num, ',score=', metrics.accuracy_score(y_test,y_pred)
recipe_classification.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录