def baseline_randomForest():
train_data = pd.read_csv(r"data/train.csv")
print u"?????\n",train_data.info()
print u'?????\n',train_data.describe()
#display_data(train_data) # ????????
#display_with_process(train_data) # ??????????????????,????
process_data = pre_processData(train_data,'process_train_data',optimize=False) # ????????????
train_data = process_data.filter(regex='Survived|Age|SibSp|Parch|Fare|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*') # ???????????
train_np = train_data.as_matrix() # ????
'''??model'''
X = train_np[:,1:]
y = train_np[:,0]
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
model = RandomForestClassifier(n_estimators=100).fit(X,y)
#predictions = model.predict(X_test)
#print np.float32(np.sum(predictions == y_test))/np.float32(predictions.shape[0])
'''??'''
test_data = pd.read_csv(r"data/test.csv")
process_test_data = pre_processData(test_data,'process_test_data',optimize=False) # ?????
test_data = process_test_data.filter(regex='Age|SibSp|Parch|Fare|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*')
test_np = test_data.as_matrix()
predict = model.predict(test_np)
result = pd.DataFrame(data={'PassengerId':process_test_data['PassengerId'].as_matrix(),'Survived':predict.astype(np.int32)})
result.to_csv(r'baseline_randomForest_result/prediction.csv',index=False)
# baseline crossValidate?SVM??———???????
评论列表
文章目录