def trainLimitedSoftmax(self, featureFile, n_datapoints):
(label_vector, input_vector) = self.__loadData__(featureFile)
n_totalrows = int((len(label_vector)/n_datapoints))
k=[]
trainData, testData, trainLabels, testLabels = \
cross_validation.train_test_split(input_vector, label_vector, test_size=(0.2))
for n in range(0, n_totalrows):
limited_label_vector = trainLabels[0: (n+1) * n_datapoints]
limited_input_vector = trainData[0: (n+1) * n_datapoints]
_, maxVal = self.trainSoftmaxWithData(limited_input_vector, limited_label_vector, 1000)
print 'Total Average Value: %s \n\n' % (maxVal)
k.append(maxVal)
print('Limited Softmax training result ----------')
for i in range (0,len(k)):
print '%f on %d datapoints' % (k[i], (n_datapoints * (i+1)))
print '------------------------------------------'
评论列表
文章目录