test_torch.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:pytorch 作者: pytorch 项目源码 文件源码
def _test_broadcast_fused_matmul(self, cast):
        fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"]

        for fn in fns:
            batch_dim = random.randint(1, 8)
            n_dim = random.randint(1, 8)
            m_dim = random.randint(1, 8)
            p_dim = random.randint(1, 8)

            def dims_full_for_fn():
                if fn == "baddbmm":
                    return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
                elif fn == "addbmm":
                    return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
                elif fn == "addmm":
                    return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim])
                elif fn == "addmv":
                    return ([n_dim], [n_dim, m_dim], [m_dim])
                elif fn == "addr":
                    return ([n_dim, m_dim], [n_dim], [m_dim])
                else:
                    raise AssertionError("unknown function")

            (t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn()
            (t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full)

            t0_small = cast(torch.randn(*t0_dims_small).float())
            t1 = cast(torch.randn(*t1_dims).float())
            t2 = cast(torch.randn(*t2_dims).float())

            t0_full = cast(t0_small.expand(*t0_dims_full))

            fntorch = getattr(torch, fn)
            r0 = fntorch(t0_small, t1, t2)
            r1 = fntorch(t0_full, t1, t2)
            self.assertEqual(r0, r1)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号