def _analytical_jacobian(self, module, input, jacobian_input=True, jacobian_parameters=True):
output = self._forward(module, input)
output_size = output.nelement()
output_t = output.data if isinstance(output, Variable) else output
if jacobian_input:
jacobian_inp = self._jacobian(input, output_size)
flat_jacobian_input = list(iter_tensors(jacobian_inp))
if jacobian_parameters:
num_param = sum(p.numel() for p in self._get_parameters(module)[0])
jacobian_param = torch.zeros(num_param, output_size)
for i in range(output_size):
_, d_param = self._get_parameters(module)
d_out = torch.zeros_like(output_t)
flat_d_out = d_out.view(-1)
flat_d_out[i] = 1
if jacobian_parameters:
self._zero_grad_parameters(module)
# Variables will accumulate gradient from multiple steps
if jacobian_input:
self._zero_grad_input(input)
d_input = self._backward(module, input, output, d_out)
if jacobian_input:
for jacobian_x, d_x in zip(flat_jacobian_input, iter_tensors(d_input)):
jacobian_x[:, i] = d_x
if jacobian_parameters:
jacobian_param[:, i] = torch.cat(self._flatten_tensors(d_param), 0)
res = tuple()
if jacobian_input:
res += jacobian_inp,
if jacobian_parameters:
res += jacobian_param,
return res
评论列表
文章目录