def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adadelta does not support sparse gradients')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
state['square_avg'] = torch.zeros_like(p.data)
state['acc_delta'] = torch.zeros_like(p.data)
square_avg, acc_delta = state['square_avg'], state['acc_delta']
rho, eps = group['rho'], group['eps']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
square_avg.mul_(rho).addcmul_(1 - rho, grad, grad)
std = square_avg.add(eps).sqrt_()
delta = acc_delta.add(eps).sqrt_().div_(std).mul_(grad)
p.data.add_(-group['lr'], delta)
acc_delta.mul_(rho).addcmul_(1 - rho, delta, delta)
return loss
评论列表
文章目录