functional.py 文件源码

python
阅读 37 收藏 0 点赞 0 评论 0

项目:pytorch 作者: pytorch 项目源码 文件源码
def btriunpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True):
    r"""Unpacks the data and pivots from a batched LU factorization (btrifact) of a tensor.

    Returns a tuple indexed by:
      0: The pivots.
      1: The L tensor.
      2: The U tensor.

    Arguments:
        LU_data (Tensor): the packed LU factorization data
        LU_pivots (Tensor): the packed LU factorization pivots
        unpack_data (bool): flag indicating if the data should be unpacked
        unpack_pivots (bool): tlag indicating if the pivots should be unpacked
    """

    nBatch, sz, _ = LU_data.size()

    if unpack_data:
        I_U = torch.triu(torch.ones(sz, sz)).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz)
        I_L = 1 - I_U
        L = LU_data.new(LU_data.size()).zero_()
        U = LU_data.new(LU_data.size()).zero_()
        I_diag = torch.eye(sz).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz)
        L[I_diag] = 1.0
        L[I_L] = LU_data[I_L]
        U[I_U] = LU_data[I_U]
    else:
        L = U = None

    if unpack_pivots:
        P = torch.eye(sz).type_as(LU_data).unsqueeze(0).repeat(nBatch, 1, 1)
        for i in range(nBatch):
            for j in range(sz):
                k = LU_pivots[i, j] - 1
                t = P[i, :, j].clone()
                P[i, :, j] = P[i, :, k]
                P[i, :, k] = t
    else:
        P = None

    return P, L, U
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号