def compare_cpu_gpu(tensor_constructor, arg_constructor, fn, t, precision=1e-5, force_gpu_half=False):
def tmp(self):
cpu_tensor = tensor_constructor(t)
type_map = {}
if force_gpu_half:
type_map = {
'torch.FloatTensor': 'torch.cuda.HalfTensor',
'torch.DoubleTensor': 'torch.cuda.HalfTensor',
}
gpu_tensor = to_gpu(cpu_tensor, type_map)
cpu_args = arg_constructor(t)
gpu_args = [to_gpu(arg, type_map) for arg in cpu_args]
cpu_result = getattr(cpu_tensor, fn)(*cpu_args)
try:
gpu_result = getattr(gpu_tensor, fn)(*gpu_args)
except RuntimeError as e:
reason = e.args[0]
if 'only supports floating-point types' in reason or 'unimplemented data type' in reason:
raise unittest.SkipTest('unimplemented data type')
raise
except AttributeError as e:
reason = e.args[0]
if 'object has no attribute' in reason:
raise unittest.SkipTest('unimplemented data type')
raise
# If one changes, another should change as well
self.assertEqual(cpu_tensor, gpu_tensor, precision)
self.assertEqual(cpu_args, gpu_args, precision)
# Compare results
self.assertEqual(cpu_result, gpu_result, precision)
return tmp
评论列表
文章目录