def summary(self, input_size):
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split('.')[-1].split("'")[0]
module_idx = len(summary)
m_key = '%s-%i' % (class_name, module_idx+1)
summary[m_key] = OrderedDict()
summary[m_key]['input_shape'] = list(input[0].size())
summary[m_key]['input_shape'][0] = -1
summary[m_key]['output_shape'] = list(output.size())
summary[m_key]['output_shape'][0] = -1
params = 0
if hasattr(module, 'weight'):
params += th.prod(th.LongTensor(list(module.weight.size())))
if module.weight.requires_grad:
summary[m_key]['trainable'] = True
else:
summary[m_key]['trainable'] = False
if hasattr(module, 'bias'):
params += th.prod(th.LongTensor(list(module.bias.size())))
summary[m_key]['nb_params'] = params
if not isinstance(module, nn.Sequential) and \
not isinstance(module, nn.ModuleList) and \
not (module == self.model):
hooks.append(module.register_forward_hook(hook))
# create properties
summary = OrderedDict()
hooks = []
# register forward hooks
self.model.apply(register_hook)
if isinstance(input_size[0], (list, tuple)):
x = [Variable(th.rand(1,*in_size)) for in_size in input_size]
self.model(*x)
else:
x = Variable(th.rand(1,*input_size))
self.model(x)
# remove these hooks
for h in hooks:
h.remove()
return summary
评论列表
文章目录