def test_net(save_folder, net, cuda, dataset, transform, top_k,
im_size=300, thresh=0.05):
"""Test a Fast R-CNN network on an image database."""
num_images = len(dataset)
# all detections are collected into:
# all_boxes[cls][image] = N x 5 array of detections in
# (x1, y1, x2, y2, score)
all_boxes = [[[] for _ in range(num_images)]
for _ in range(len(labelmap)+1)]
# timers
_t = {'im_detect': Timer(), 'misc': Timer()}
output_dir = get_output_dir('ssd300_120000', set_type)
det_file = os.path.join(output_dir, 'detections.pkl')
for i in range(num_images):
im, gt, h, w = dataset.pull_item(i)
x = Variable(im.unsqueeze(0))
if args.cuda:
x = x.cuda()
_t['im_detect'].tic()
detections = net(x).data
detect_time = _t['im_detect'].toc(average=False)
# skip j = 0, because it's the background class
for j in range(1, detections.size(1)):
dets = detections[0, j, :]
mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t()
dets = torch.masked_select(dets, mask).view(-1, 5)
if dets.dim() == 0:
continue
boxes = dets[:, 1:]
boxes[:, 0] *= w
boxes[:, 2] *= w
boxes[:, 1] *= h
boxes[:, 3] *= h
scores = dets[:, 0].cpu().numpy()
cls_dets = np.hstack((boxes.cpu().numpy(), scores[:, np.newaxis])) \
.astype(np.float32, copy=False)
all_boxes[j][i] = cls_dets
print('im_detect: {:d}/{:d} {:.3f}s'.format(i + 1,
num_images, detect_time))
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
print('Evaluating detections')
evaluate_detections(all_boxes, output_dir, dataset)
评论列表
文章目录