def test_from_numpy(self):
dtypes = [
np.double,
np.float,
np.int64,
np.int32,
np.int16,
np.uint8
]
for dtype in dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
self.assertEqual(torch.from_numpy(array), torch.Tensor([1, 2, 3, 4]))
# check storage offset
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[1]
expected = torch.arange(1, 126).view(5, 5, 5)[1]
self.assertEqual(torch.from_numpy(x), expected)
# check noncontiguous
x = np.linspace(1, 25, 25)
x.shape = (5, 5)
expected = torch.arange(1, 26).view(5, 5).t()
self.assertEqual(torch.from_numpy(x.T), expected)
# check noncontiguous with holes
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[:, 1]
expected = torch.arange(1, 126).view(5, 5, 5)[:, 1]
self.assertEqual(torch.from_numpy(x), expected)
评论列表
文章目录