def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = d_p.clone()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
# Update rule: g * e(sign(g)*sign(m))
d_p = d_p.mul(torch.exp(torch.sign(d_p)*torch.sign(buf)))
p.data.add_(-group['lr'], d_p)
return loss
optimizer_1.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录