test_torch.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:pytorch 作者: tylergenter 项目源码 文件源码
def test_topk(self):
        def topKViaSort(t, k, dim, dir):
            sorted, indices = t.sort(dim, dir)
            return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)

        def compareTensors(t, res1, ind1, res2, ind2, dim):
            # Values should be exactly equivalent
            self.assertEqual(res1, res2, 0)

            # Indices might differ based on the implementation, since there is
            # no guarantee of the relative order of selection
            if not ind1.eq(ind2).all():
                # To verify that the indices represent equivalent elements,
                # gather from the input using the topk indices and compare against
                # the sort indices
                vals = t.gather(dim, ind2)
                self.assertEqual(res1, vals, 0)

        def compare(t, k, dim, dir):
            topKVal, topKInd = t.topk(k, dim, dir, True)
            sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
            compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)

        t = torch.rand(random.randint(1, SIZE),
                       random.randint(1, SIZE),
                       random.randint(1, SIZE))

        for _kTries in range(3):
            for _dimTries in range(3):
                for transpose in (True, False):
                    for dir in (True, False):
                        testTensor = t
                        if transpose:
                            dim1 = random.randrange(t.ndimension())
                            dim2 = dim1
                            while dim1 == dim2:
                                dim2 = random.randrange(t.ndimension())

                            testTensor = t.transpose(dim1, dim2)

                        dim = random.randrange(testTensor.ndimension())
                        k = random.randint(1, testTensor.size(dim))
                        compare(testTensor, k, dim, dir)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号