def backward(ctx, grad_output):
v1, v2, y = ctx.saved_tensors
buffer = v1.new()
_idx = v1.new().byte()
gw1 = grad_output.new()
gw2 = grad_output.new()
gw1.resize_as_(v1).copy_(v2)
gw2.resize_as_(v1).copy_(v1)
torch.mul(ctx.w1, ctx.w22, out=buffer)
gw1.addcmul_(-1, buffer.expand_as(v1), v1)
gw1.mul_(ctx.w.expand_as(v1))
torch.mul(ctx.w1, ctx.w32, out=buffer)
gw2.addcmul_(-1, buffer.expand_as(v1), v2)
gw2.mul_(ctx.w.expand_as(v1))
torch.le(ctx._outputs, 0, out=_idx)
_idx = _idx.view(-1, 1).expand(gw1.size())
gw1[_idx] = 0
gw2[_idx] = 0
torch.eq(y, 1, out=_idx)
_idx = _idx.view(-1, 1).expand(gw2.size())
gw1[_idx] = gw1[_idx].mul_(-1)
gw2[_idx] = gw2[_idx].mul_(-1)
if ctx.size_average:
gw1.div_(y.size(0))
gw2.div_(y.size(0))
grad_output_val = grad_output[0]
if grad_output_val != 1:
gw1.mul_(grad_output_val)
gw2.mul_(grad_output_val)
return gw1, gw2, None, None, None
评论列表
文章目录