def updateOutput(self, input, y):
input1, input2 = input[0], input[1]
# keep backward compatibility
if self.buffer is None:
self.buffer = input1.new()
self.w1 = input1.new()
self.w22 = input1.new()
self.w = input1.new()
self.w32 = input1.new()
self._outputs = input1.new()
# comparison operators behave differently from cuda/c implementations
# TODO: verify name
if input1.type() == 'torch.cuda.FloatTensor':
self._idx = torch.cuda.ByteTensor()
else:
self._idx = torch.ByteTensor()
torch.mul(input1, input2, out=self.buffer)
torch.sum(self.buffer, 1, out=self.w1)
epsilon = 1e-12
torch.mul(input1, input1, out=self.buffer)
torch.sum(self.buffer, 1, out=self.w22).add_(epsilon)
# self._outputs is also used as a temporary buffer
self._outputs.resize_as_(self.w22).fill_(1)
torch.div(self._outputs, self.w22, out=self.w22)
self.w.resize_as_(self.w22).copy_(self.w22)
torch.mul(input2, input2, out=self.buffer)
torch.sum(self.buffer, 1, out=self.w32).add_(epsilon)
torch.div(self._outputs, self.w32, out=self.w32)
self.w.mul_(self.w32)
self.w.sqrt_()
torch.mul(self.w1, self.w, out=self._outputs)
self._outputs = self._outputs.select(1, 0)
torch.eq(y, -1, out=self._idx)
self._outputs[self._idx] = self._outputs[self._idx].add_(-self.margin).clamp_(min=0)
torch.eq(y, 1, out=self._idx)
self._outputs[self._idx] = self._outputs[self._idx].mul_(-1).add_(1)
self.output = self._outputs.sum()
if self.sizeAverage:
self.output = self.output / y.size(0)
return self.output
评论列表
文章目录