def forward(self, char, word):
weights = t.nn.functional.softmax(self.weights)
outs =[]
for ii,model in enumerate(self.models):
if model.opt.type_=='char':
out = t.sigmoid(model(*char))
else:
out=t.sigmoid(model(*word))
out = out*(weights[:,ii].contiguous().view(1,-1).expand_as(out))
outs.append(out)
return sum(outs)
评论列表
文章目录