def sample_outputs(generator, Nsamples, arguments):
inp = torch.randn(Nsamples, arguments.L1)
if arguments.cuda:
inp = inp.cuda()
out = generator.forward(Variable(inp))
if arguments.task == 'images':
out = out.contiguous().view(-1, arguments.nfts, arguments.T)
return torch.split(out.data, split_size=1, dim=0)
评论列表
文章目录