CNNLSTMPolicy.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:generals_a3c 作者: yilundu 项目源码 文件源码
def forward(self, input):
        # TODO perhaps add batch normalization or layer normalization

        x = F.elu(self.conv1(input))
        x = F.elu(self.conv2(x))
        x = F.elu(self.conv3(x))

        # Next flatten the output to be batched into LSTM layers
        # The shape of x is batch_size, channels, height, width
        x = self.pre_lstm_bn(x)

        x = torch.transpose(x, 1, 3)
        x = torch.transpose(x, 1, 2)
        x = x.contiguous()

        x = x.view(x.size(0), self.batch, self.hidden_dim)
        x, hidden = self.lstm(x, (self.hidden_state, self.cell_state))
        self.hidden_state, self.cell_state = hidden

        x = torch.transpose(x, 2, 1)
        x = x.contiguous()
        x = x.view(x.size(0), self.hidden_dim, self.height, self.width)

        x = self.lstm_batch_norm(x)

        x = F.elu(self.conv4(x))
        x = F.elu(self.conv5(x))

        o_begin = self.begin_conv(x)
        o_end = self.end_conv(x)

        o_begin = o_begin.view(o_begin.size(0), -1)
        o_end = o_end.view(o_end.size(0), -1)

        o_begin = F.log_softmax(o_begin)
        o_end = F.log_softmax(o_end)

        return o_begin, o_end
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号