def forward(self, inp, hidden):
emb = self.drop(self.encoder(inp))
outp = self.bilstm(emb, hidden)[0]
if self.pooling == 'mean':
outp = torch.mean(outp, 0).squeeze()
elif self.pooling == 'max':
outp = torch.max(outp, 0)[0].squeeze()
elif self.pooling == 'all' or self.pooling == 'all-word':
outp = torch.transpose(outp, 0, 1).contiguous()
return outp, emb
models.py 文件源码
python
阅读 37
收藏 0
点赞 0
评论 0
评论列表
文章目录