def forward(self, input):
embed = self.embed(input)
embed = self.dropout(embed) # add this reduce the acc
input = embed.view(len(input), embed.size(1), -1)
# gru
gru_out, hidden = self.bigru(input, self.hidden)
gru_out = torch.transpose(gru_out, 0, 1)
gru_out = torch.transpose(gru_out, 1, 2)
# pooling
# gru_out = F.tanh(gru_out)
gru_out = F.max_pool1d(gru_out, gru_out.size(2)).squeeze(2)
gru_out = F.tanh(gru_out)
# linear
y = self.hidden2label(gru_out)
logit = y
return logit
model_BiGRU.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录