def generate(decoder, prime_str='A', predict_len=100, temperature=0.8, cuda=False):
hidden = decoder.init_hidden(1)
prime_input = torch.autograd.Variable(char_tensor(prime_str).unsqueeze(0))
if cuda:
hidden = hidden.cuda()
prime_input = prime_input.cuda()
predicted = prime_str
# Use priming string to "build up" hidden state
for p in range(len(prime_str) - 1):
_, hidden = decoder(prime_input[:,p], hidden)
inp = prime_input[:,-1]
for p in range(predict_len):
output, hidden = decoder(inp, hidden)
# Sample from the network as a multinomial distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = torch.multinomial(output_dist, 1)[0]
# Add predicted character to string and use as next input
predicted_char = chars[top_i]
predicted += predicted_char
inp = torch.autograd.Variable(char_tensor(predicted_char).unsqueeze(0))
if cuda:
inp = inp.cuda()
return predicted
# Run as standalone script
评论列表
文章目录