def test_multinomial(self):
# with replacement
n_row = 3
for n_col in range(4, 5+1):
prob_dist = torch.rand(n_row, n_col)
prob_dist.select(1, n_col-1).fill_(0) #index n_col shouldn't be sampled
n_sample = n_col
sample_indices = torch.multinomial(prob_dist, n_sample, True)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for index in product(range(n_row), range(n_sample)):
self.assertNotEqual(sample_indices[index], n_col, "sampled an index with zero probability")
# without replacement
n_row = 3
for n_col in range(4, 5+1):
prob_dist = torch.rand(n_row, n_col)
prob_dist.select(1, n_col-1).fill_(0) #index n_col shouldn't be sampled
n_sample = 3
sample_indices = torch.multinomial(prob_dist, n_sample, False)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for i in range(n_row):
row_samples = {}
for j in range(n_sample):
sample_idx = sample_indices[i,j]
self.assertNotEqual(sample_idx, n_col-1,
"sampled an index with zero probability")
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
row_samples[sample_idx] = True
# vector
n_col = 4
prob_dist = torch.rand(n_col)
n_sample = n_col
sample_indices = torch.multinomial(prob_dist, n_sample, True)
s_dim = sample_indices.dim()
self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions")
self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions")
self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples")
评论列表
文章目录