def _test_dim_reduction(self, cast):
dim_red_fns = [
"mean", "median", "mode", "norm", "prod",
"std", "sum", "var", "max", "min"]
def normfn_attr(t, dim, keepdim=False):
attr = getattr(torch, "norm")
return attr(t, 2, dim, keepdim)
for fn_name in dim_red_fns:
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
def fn(x, dim, keepdim=False):
ans = fn_attr(x, dim, keepdim=keepdim)
return ans if not isinstance(ans, tuple) else ans[0]
def test_multidim(x, dim):
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# general case
x = cast(torch.randn(3, 4, 5))
dim = random.randint(0, 2)
test_multidim(x, dim)
# check 1-d behavior
x = cast(torch.randn(1))
dim = 0
self.assertEqual(fn(x, dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension(), fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# check reducing of a singleton dimension
dims = [3, 4, 5]
singleton_dim = random.randint(0, 2)
dims[singleton_dim] = 1
x = cast(torch.randn(dims))
test_multidim(x, singleton_dim)
评论列表
文章目录