functional.py 文件源码

python
阅读 77 收藏 0 点赞 0 评论 0

项目:pytorch 作者: ezyang 项目源码 文件源码
def cosine_similarity(x1, x2, dim=1, eps=1e-8):
    r"""Returns cosine similarity between x1 and x2, computed along dim.

    .. math ::
        \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}

    Args:
        x1 (Variable): First input.
        x2 (Variable): Second input (of size matching x1).
        dim (int, optional): Dimension of vectors. Default: 1
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-8

    Shape:
        - Input: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`.
        - Output: :math:`(\ast_1, \ast_2)` where 1 is at position `dim`.

    Example::

        >>> input1 = autograd.Variable(torch.randn(100, 128))
        >>> input2 = autograd.Variable(torch.randn(100, 128))
        >>> output = F.cosine_similarity(input1, input2)
        >>> print(output)
    """
    w12 = torch.sum(x1 * x2, dim)
    w1 = torch.norm(x1, 2, dim)
    w2 = torch.norm(x2, 2, dim)
    return (w12 / (w1 * w2).clamp(min=eps)).squeeze()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号