StructuredAttention.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:OpenNMT-py 作者: OpenNMT 项目源码 文件源码
def forward(self, input):
        laplacian = input.exp() + self.eps
        output = input.clone()
        for b in range(input.size(0)):
            lap = laplacian[b].masked_fill(
                Variable(torch.eye(input.size(1)).cuda().ne(0)), 0)
            lap = -lap + torch.diag(lap.sum(0))
            # store roots on diagonal
            lap[0] = input[b].diag().exp()
            inv_laplacian = lap.inverse()

            factor = inv_laplacian.diag().unsqueeze(1)\
                                         .expand_as(input[b]).transpose(0, 1)
            term1 = input[b].exp().mul(factor).clone()
            term2 = input[b].exp().mul(inv_laplacian.transpose(0, 1)).clone()
            term1[:, 0] = 0
            term2[0] = 0
            output[b] = term1 - term2
            roots_output = input[b].diag().exp().mul(
                inv_laplacian.transpose(0, 1)[0])
            output[b] = output[b] + torch.diag(roots_output)
        return output
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号