def forward(self, x):
nBatch = x.size(0)
x = self.fc1(x)
L = self.M*self.L
Q = L.mm(L.t()) + self.args.eps*Variable(torch.eye(self.nHidden)).cuda()
Q = Q.unsqueeze(0).expand(nBatch, self.nHidden, self.nHidden)
G = self.G.unsqueeze(0).expand(nBatch, self.nineq, self.nHidden)
h = self.G.mv(self.z0)+self.s0
h = h.unsqueeze(0).expand(nBatch, self.nineq)
e = Variable(torch.Tensor())
x = QPFunction()(Q, x, G, h, e, e)
x = x[:,:self.nFeatures]
return x
评论列表
文章目录